Кинематика

Определение слова Кинематика по Ефремовой

Кинематика — 1. Раздел механики, в котором изучаются геометрические свойства движения тел без учета их массы и действующих на них сил.
2. Движение звеньев механизма независимо от приложенных к ним сил.

Определение слова Кинематика по Ожегову

Кинематика — Раздел механики, изучающий движение тел без учета их массы и действующих на них сил

Кинематика — описание в Энциклопедическом словаре

Кинематика — (от греч. kinema — родительный падеж kinematos — движение),раздел механики, в котором изучаются геометрические свойства движения телбез учета их массы и действующих на них сил.

Определение слова Кинематика по словарю Ушакова

КИНЕМАТИКА
кинематики, мн. нет, ж. (от греч. kinema — движение) (мех.). Отдел механики — учение о движении независимо от причин, его производящих.

Определение слова Кинематика по словарю Брокгауза и Ефрона

Кинематиканаука, изучающая состояние движения независимо от вызывающих его сил и получившая название от греческого слова κίνημ&#945. — состояние движения и составляющая часть общей науки о движении — механики. Цель ее состоит в изучении геометрических свойств движения, скоростей и ускорений: для достижения этой цели пользуются анализом и геометрией. К. называют геометрией четырех измерений, так как она имеет дело с тремя координатами пространства и еще с четвертым переменным, представляющим собой время. Скорости представляются первыми производными от координат по времени, ускорение — вторыми производными и еще, кроме того, рассматриваются производные от координат по времени высших порядков, называемые ускорениями высших порядков. С аналитической точки зрения вся К. сводится к изучению соотношений, существующих между этими величинами. В последнее время появилось стремление к изучению К. чисто геометрическими способами. Первые, весьма общие кинематические теоремы, чисто геометрического характера даны были знаменитым Пуансо (Poinsot) в его "Th &eacute. orie nouvelle de rotation des corps" в 1834 году. Если рассматривать движение таких систем, все точки которых движутся в плоскостях, параллельных между собой, то дело приводится к рассмотрению движения плоских фигур в плоскости (К. на плоскости). Перемещение неизменяемой фигуры в плоскости вполне определяется перемещением неизменяемо соединенного с той фигурой прямолинейного отрезка. Всякое же перемещение в плоскости прямолинейного отрезка из одного положения в другое может быть произведено вращением отрезка около некоторой точки, называемой центром перемещения. Действительно: пусть A1B1 и А 2 В 2 будут два положения отрезка AB. восставим из середин А 1 А 2 и В 1 В 2 перпендикуляры ар и bq, которые пересекутся в некоторой точке P. Из равенства треугольников не трудно видеть, что PA1=PA2 и PB1=PB2 и что, следовательно, точка A может быть переведена из положения A1 в положение А 2 вращением прямой PA около точки P. точно так же доказывается, что точка B может быть переведена из положения В 1 в положение B2 вращением прямой PB около точки P. Следовательно, весь отрезок AB может быть перемещен из положения А 1 В 1 в положение А 2 В 2 вращением треугольника PAB около точки P, которая и называется центром перемещения. В случае взаимной параллельности положений А 1 В 1 и А 2 В 2 центр перемещения лежит в бесконечности. Непрерывное движение плоской фигуры в ее плоскости рассматривается как ряд бесконечно малых перемещений фигур из одного положения в соседнее. для каждых двух соседних положений существует свой центр перемещения, называемый, в случае непрерывного движения фигуры, мгновенным центром, потому что фигура переходит из одного положения в соседнее (бесконечно мало отличающееся от первого) в бесконечно малый промежуток времени, в течение которого она, по доказанному, вращается около мгновенного центра. в следующий момент фигура переходит из второго положения в третье, вращаясь около другого мгновенного центра, и т. д. Последовательный ряд мгновенных центров образует в неподвижной плоскости кривую, называемую неподвижной полодией. В плоскости, совпадающей с неподвижной, но неизменяемо соединенной с фигурой и увлекаемой ею в ее движении, ряд мгновенных центров образует кривую, называемую подвижной полодией, и движение данной фигуры происходит так, как будто фигура эта, неизменяемо соединенная с подвижной полодией, увлекалась в движение тем, что подвижная полодия катится (см. Катание) по неподвижной полодии. Итак, движение плоских неизменяемых фигур в их плоскости приводится к катанию кривых. В каждый данный момент мгновенный центр находится в точке взаимного прикосновения полодий, и фигура вращается на бесконечно малый угол около этой точки. Поэтому скорости всех точек движущейся фигуры и точек, неизменяемо соединенных с нею, пропорциональны прямым (радиус-векторам), проведенным из этих точек в мгновенный центр, соответствующий данному моменту, и направлены по перпендикулярам к упомянутым радиус-векторам. Подобным же образом движение твердого тела около неподвижной точки и исследование скорости этого движения приводится к изучению катания одного конуса по другому, причем вершины обоих конусов находятся в неподвижной точке, а конусам этим присваивается название аксоидов. Самое общее (всякое) движение твердого тела приводится к катанию одной линейчатой поверхности (см.) по другой, соединенному со скольжением (см.). Движение около точки и общее движение изучаются К. в пространстве. К. изучает и движение изменяемых систем. Скорости поступательные, скорости вращения и ускорения изображаются прямолинейными отрезками и складываются по правилам сложения векторов (см. Сложение векторов). Доказывается, что в бесконечно малый момент всякое движение неизменяемой системы приводится к винтовому. К. жидкого тела опирается главнейшим образом на исследование деформаций бесконечно малого параллелепипеда и на конформное преобразование плоскостей мнимого переменного. Выделение К., как особой науки, из общего цикла наук о движении произведено было Ампером в его "Essai sur la philosophie des sciences" в 1834 г. Чисто аналитическую обработку К. получила в сочинении Резаля: "Trait &eacute. de cin&eacute. matique pure". В следующих сочинениях: Бобылев, "Курс аналитической механики". Schel, "Theorie der Bewegung und der Kr &auml.fte". Collignon, "Trait&eacute. de mecanique". Сомов, "Теоретическая механика" и во многих других методы аналитический и геометрический взаимно дополняются. Превосходное, чисто геометрическое изложение К. дается в книге Бурместра "Lehrbuch der Kinematik". В связи с приложением к теории механизмов К. трактуется в классическом сочинении Reuleaux "Theoretische Kinematik" (1888), а также в следующих: Willis, "Principles of Mechanism" (1841). Giulio, "Elem enti di cin&eacute.matica applicata alle arti" (1847). Laboulaye, "Trait&eacute. de cin&eacute.matique" (1849, 1864, 1878). Morin, "Notion g&eacute.om&eacute.triques sur les mouvements et leurs transformations" (1851). Girault, "El&eacute.ments de G&eacute.om&eacute.trie appliqu&eacute.e &agrave. la transformation du mouvement dans les machines" (1858). Belanger, "Trait&eacute. de cin&eacute.matique" (1864). Haton de la Goupilli&egrave.re, "Trait&eacute. de m&eacute.canismes" (1864). Bour, "Cours de m&eacute. canique et machines" (1865) и Streinz, "Physikalische Grundlagen der Mechanik" (1883). К. жидкого тела изложена в сочинении профессора Жуковского: "Кинематика жидкого тела" (1876). H. Делоне.

Значение слова «Кинематика» по БСЭ

Кинематика (от греч. kнnema, родительный падеж kinematos — движение)
раздел механики, посвященный изучению геометрических свойств движений без учета их масс и действующих на них сил. Излагаемое ниже относится к К. движений, рассматриваемых в классической механике (движение макроскопических тел со скоростями, малыми по сравнению со скоростью света). О К. движений со скоростями, близкими к скоростям света, см. Относительности теория, а о движениях микрочастиц — Квантовая механика.
Устанавливаемые в К. методы и зависимости используются при кинематических исследованиях движений, в частности при расчётах передач движений в различных механизмах, машинах и др., а также при решении задач динамики. В зависимости от свойств изучаемого объекта К. разделяют на К. точки, К. твёрдого тела и К. непрерывной изменяемой среды (деформируемого тела, жидкости, газа).
Движение любого объекта в К. изучают по отношению к некоторому телу (тело отсчёта). с ним связывают так называемую систему отсчёта (оси х, у, z на рис. 1), с помощью которой определяют положение движущегося объекта относительно тела отсчёта в разные моменты времени. Выбор системы отсчёта в К. произволен и зависит от целей исследования. Например, при изучении движения колеса вагона по отношению к рельсу систему отсчёта связывают с землёй, а при изучении движения того же колеса по отношению к кузову вагона — с кузовом и т.д. Движение рассматриваемого объекта считается заданным (известным), если известны уравнения, называемые уравнениями движения (или графики, таблицы), позволяющие определить положение этого объекта по отношению к системе отсчёта в любой момент времени.
Основная задача К. заключается в установлении (при помощи тех или иных математических методов) способов задания движения точек или тел и в определении по уравнениям их движений соответствующих кинематических характеристик движения, таких, как траектории, скорости и ускорения движущихся точек, угловые скорости и угловые ускорения вращающихся тел и др. Для задания движения точки пользуются одним из 3 способов: естественным, координатным или векторным:
а) естественный (или траекторный), применяемый, когда известна траектория точки по отношению к выбранной системе отсчёта. Положение, точки определяется расстоянием s = O1M от выбранного на траектории начала отсчёта O1, измеренным вдоль дуги траектории и взятым с соответствующим знаком (рис. 1), а закон движения даётся уравнением s = &fnof.(t), выражающим зависимость s от времени t. Например, если задано, что s = 3tІ-1, то в начальный момент времени t0 = 0, S0 = -1 м (точка находится слева от начала O на расстоянии 1 м), в момент t1 = 1 сек, S1 = 2 м (точка справа от O1 на расстоянии 2 м) и т.д. Зависимость s от t может быть также задана графиком движения, на котором в выбранном масштабе отложены вдоль оси t время, а вдоль оси s — расстояние (рис. 2), или таблицей, где в одном столбце даются значения t, а в другом соответствующие им значения s (подобный способ применяется, например, в железнодорожном расписании движения поезда).
б) Координатный, при котором положение точки относительно системы отсчёта определяется какими-нибудь тремя координатами, например прямоугольными декартовыми х, у, z, а закон движения задаётся 3 уравнениями х = f1(t), у = f2(t), z = f3(t). Исключив из этих уравнений время t, можно найти траекторию точки.
в) Векторный, при котором положение точки по отношению к системе отсчёта определяется её радиус-вектором r, проведённым от начала отсчёта до движущейся точки, а закон движения даётся векторным уравнением r = r (t). Траектория точки — Годограф вектора r.
Основными кинематическими характеристиками движущейся точки являются её скорость и ускорение, значения которых определяются по уравнениям движения через первые и вторые производные по времени от s или от х,y, z, или от r (см. Скорость, Ускорение).
Способы задания движения твёрдого тела зависят от вида, а число уравнений движения — от числа степеней свободы тела (см. Степеней свободы число). Простейшими являются Поступательное движение и Вращательное движение твёрдого тела. При поступательном движении все точки тела движутся одинаково, и его движение задаётся и изучается так же, как движение одной точки. При вращательном движении вокруг неподвижной оси z (рис. 3) тело имеет одну степень свободы. его положение определяется углом поворота
&phi., а закон движения задаётся уравнением &phi. = &fnof.(t). Основными кинематическими характеристиками являются угловая скорость &omega.=d&phi./dt и угловое ускорение &epsilon. = d&omega./dt тела. Величины &omega. и &epsilon. изображаются в виде векторов, направленных вдоль оси вращения. Зная &omega. и &epsilon., можно определить скорость и ускорение любой точки тела.
Более сложным является движение тела, имеющего одну неподвижную точку и обладающего 3 степенями свободы (например, Гироскоп, или волчок). Положение тела относительно системы отсчёта определяется в этом случае какими-нибудь 3 углами (например, Эйлера углами: углами прецессии, нутации и собственного вращения), а закон движения — уравнениями, выражающими зависимость этих углов от времени. Основными кинематическими характеристиками являются мгновенная угловая скорость &omega. и мгновенное угловое ускорение &epsilon. тела.
Движение тела слагается из серии элементарных поворотов вокруг непрерывно меняющих своё направление мгновенных осей вращения ОР, проходящих через неподвижную точку O (рис. 4).
Самым общим случаем является движение свободного твёрдого тела, имеющего 6 степеней свободы. Положение тела определяется 3 координатами одной из его точек, называемых полюсом (в задачах динамики за полюс принимается центр тяжести тела), и 3 углами, выбираемыми так же, как для тела с неподвижной точкой. закон движения тела задаётся 6 уравнениями, выражающими зависимости названных координат и углов от времени. Движение тела слагается из поступательного вместе с полюсом и вращательного вокруг этого полюса, как вокруг неподвижной точки. Таким, например, является движение в воздухе артиллерийского снаряда или самолета, совершающего фигуры высшего пилотажа, движение небесных тел и др. Основными кинематическими характеристиками являются скорость и ускорение поступательной части движения, равные скорости и ускорению полюса, и угловая скорость и угловое ускорение вращения тела вокруг полюса. Все эти характеристики (как и кинематические характеристики для тела с неподвижной точкой) вычисляются по уравнениям движения. зная эти характеристики, можно определить скорость и ускорение любой точки тела. Частным случаем рассмотренного движения является плосконаправленное (или плоское) движение твёрдого тела, при котором все его точки движутся параллельно некоторой плоскости. Подобное движение совершают звенья многих механизмов и машин.
В К. изучают также сложное движение точек или тел, то есть движение, рассматриваемое одновременно по отношению к двум (и более) взаимно перемещающимся системам отсчета. При этом одну из систем отсчета рассматривают как основную (ее еще называют условно неподвижной), а перемещающуюся по отношению к ней систему отсчёта называют подвижной. в общем случае подвижных систем отсчёта может быть несколько.
При изучении сложного движения точки её движение, а также скорость и ускорение по отношению к основной системе отсчёта называют условно абсолютными, а по отношению к подвижной системе — относительными. Движение самой подвижной системы отсчёта и всех неизменно связанных с ней точек пространства по отношению к основной системе называют переносным движением, а скорость и ускорение той точки подвижной системы отсчёта, с которой в данный момент совпадает движущаяся точка, называют переносной скоростью и переносным ускорением. Например, если основную систему отсчета связать с берегом, а подвижную с пароходом, идущим по реке, и рассмотреть качение шарика по палубе парохода (считая шарик точкой), то скорость и ускорение шарика по отношению к палубе будут относительными, а по отношению к берегу — абсолютными. скорость же и ускорение той точки палубы, которой в данный момент касается шарик, будут для него переносными. Аналогичная терминология используется и при изучении сложного движения твёрдого тела.
Основные задачи К. сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, т. е.
&nu.a= &nu.oтн+ &nu.пер,
а абсолютное ускорение точки равно геометрической сумме трёх ускорений — относительного, переносного и поворотного, или кориолисова (см. Кориолиса ускорение), т. е.
wa = woтн+wпер+wkop.
Для твердого тела, когда все составные (то есть относительные и переносные) движения являются поступательными, абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений (см. Винтовое движение).
В К. непрерывной среды устанавливаются способы задания движения этой среды, рассматривается общая теория деформаций и определяются так называемые уравнения неразрывности, отражающие условия непрерывности среды.
Лит. см. при ст. Механика.
С. М. Тарг.
Рис. 1 к ст. Кинематика.
Рис. 2 к ст. Кинематика.
Рис. 3 к ст. Кинематика.
Рис. 4 к ст. Кинематика.

РубрикиК