Индексы

Индексы — описание в Энциклопедическом словаре

Индексы — в статистике — относительные величины, количественнохарактеризующие динамику совокупности, состоящей из непосредственнонесоизмеримых единиц, или части такой совокупности (напр., общий индексоптовых цен всех товаров и групповые индексы цен продуктовых инепродуктовых товаров или промышленных и сельскохозяйственных товаров и т.д.). Элементы любого индекса: индексируемая величина, тип (форма), веса,сроки исчисления.

Определение слова Индексы по словарю Брокгауза и Ефрона

Индексы (кристаллограф.) — символы, употребляемые для обозначения положения плоскостей в кристалле по отношению его координатных осей (см.) по способу Миллера. Если возьмем какую-нибудь плоскость с отрезками координатных осей, т. е. с параметрами (см.) а:b:c, то всякую другую плоскость можно выразить некотор. частями этих параметров: a/h:b/k:c/l. а, b, с — как единицы меры можно подразумевать, тогда остаются знаменатели h, k, l, которые и назыв. индексами (показателями), причем принимают, для определ. относит. их величины, что h>k>l. Для обозначения одной плоскости многогранника И. пишут в малых скобках (hkl), для обозначения всей формы — в больших скобках {hkl}. первые называются символом плоскости. Для отрицательного индекса пишут знак — сверху: .

Значение слова «Индексы» по БСЭ

Индексы — в теории чисел, числа, играющие при решении сравнений роль, аналогичную роли логарифмов при решении показательных уравнений. Если p — нечётное простое число, g — Первообразный корень по модулю p, то И. числа а называется такое число k = ind a, что а
&equiv. gk (mod p). Свойства И.:
ind ab = ind a + ind b (mod p — 1),
ind (a/b) = ind a — ind b (mod p — 1),
где a/b следует понимать как корень сравнения bx &equiv. a (mod p). При решении двухчленных сравнений axn &equiv. b (mod p) И. используют для перехода к линейным сравнениям ind a + n ind x
&equiv. ind b (mod p — 1). Ввиду практической пользы И. для каждого простого модуля p (не слишком большого) имеются специальные таблицы. В 1839 немецкий математик К. Якоби составил таблицу И. для всех простых чисел до 1000. Советскому математику И. М. Виноградову принадлежат важные исследования о распределении И.
Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972.


Индексы — в статистике, относительные величины, количественно характеризующие сводную динамику (реже — изменение в пространстве) разносоставной совокупности. Так,
Iгос.розничных ценСССР 64 &frasl. 50 = 0,76 (или 76%)
означает, что общий уровень всех розничных цен в государственной торговле СССР в 1964 по сравнению с уровнем их в 1950 был 0,76, или 76% (иначе говоря: взятые в совокупности, эти цены понизились с 1950 по 1964 в среднем на 0,24, или на 24%). Совокупность является разносоставной по данному признаку, если итоговую величину этого признака во всей совокупности прямым, непосредственным суммированием его значений у отдельных единиц вычислить нельзя (например, натуральная величина продукции, состоящей из вещественно разных физических единиц или частей) или если такое суммирование, формально хотя и возможное, приводит к результату, лишённому экономического смысла (например, сумма цен вещественно разных товаров, взятых лишь по одной единице натурального измерения).
Четырьмя элементами любого И. являются: а) индексируемая величина. б) тип (форма) И.. в) веса И.. г) сроки исчисления. В зависимости от элемента (а) возможны И. цен, И. физического (натурального) объёма продукции, И. производительности труда и т. д. В зависимости от типа (б) различают И. агрегатные и И. средние, а среди последних, смотря по форме средней, И. средние арифметические, И. средние геометрические, И. средние гармонические и т. д. В зависимости от весов (в) различают И. простые (невзвешенные) и И. взвешенные, а среди последних — И. с постоянными (неизменными) весами и И. с переменными весами (в меру необходимости с течением времени пересматриваемыми). В зависимости от сроков исчисления (г) рассматривают И. базисные (с постоянной, неизменной во времени базой) и И. цепные (если числовые значения индексируемой величины в каждый данный «текущий» срок сопоставляются с их значениями в предшествующий срок. иначе, И. с переменной базой).
в общем случае произведение соответствующих цепных И. должно давать базисный И., например
Iцен69 &frasl. 68 Ч Iцен70 &frasl. 69 Ч Iцен71 &frasl. 70 = Iцен71 &frasl. 68
И. могут быть вычисляемы не только для всей разносоставной совокупности (общие, «тотальные» И.), но и для любой характерной части её, для любой существенной группы единиц (групповые И., или субиндексы), например: общий И. оптовых цен всех вообще товаров и групповые И. цен товаров продовольственных и цен товаров непродовольственных, или промышленных и сельскохозяйственных, или И. цен текстильных товаров, цен кожевенных товаров и т. д. Обычная относительная величина признака у какого-либо одного товара (например, относительное изменение

iz =
zI1971
&mdash.&mdash.
zI1968

себестоимости z товара I за указанное трёхлетие) не есть И., хотя на практике обычно именуется, по аналогии, «индивидуальным И.» (себестоимости).
Труднейший вопрос при построении И. — выбор его весов и возможно более точное исчисление веса каждой группы, иногда и каждой единицы, входящей в индексируемую совокупность. Система таких весов должна отображать модель структуры того социально-экономического явления, динамика которого находит числовое выражение в И. Так, веса И. цен должны отражать товарную структуру торгового оборота (розничного, оптового), весами бюджетного индекса должны быть натуральные количества товаров и услуг, входящих в Бюджетный набор, и т. п. В И. физического (натурального) объёма роль весов для натуральных количеств товаров играют неизменные цены, благодаря которым становится возможным
«соизмерить» и свести воедино все части разносоставной натуральной совокупности. отсюда — частая общая, однако неправомерная, трактовка любых весов И. как «коэффициентов соизмерения», «коэффициентов сведения» частей разносоставной совокупности.
К рудиментарным прообразам И. прибегали уже два столетия (и даже более) тому назад. Так, в 1738 Дюто (Франция) сопоставил суммы цен набора из единиц некоторых товаров и опубликовал их отношение
(&sum.p1 &frasl. &sum.p0. простой агрегатный индекс). в 1764 Дж. Карли (Италия) вычислил примитивный невзвешенный арифметический И. изменения цен трёх товаров (хлеб, вино, оливковое масло) за четверть тысячелетия (с 1500 по 1750). в 1798, независимо от Карли, Дж. Шакберг (Великобритания) стал вычислять таким же способом
(&sum.(p1 &frasl. p0) &frasl. n) И. оптовых цен десятка товаров, а в 1812 А. Янг (Великобритания) ввёл в этот И. веса (от 1 до 5 для разных товаров). Однако лишь спустя полстолетия (вследствие обесценения серебра и вызванного этим общего роста мировых цен, особенно в 60-х гг.) в Великобритании начались систематическое исчисление и публикация И. оптовых цен.
Главные из них: И. журнала «Economist» (с 1869, по формуле
(&sum.p1 &frasl. p0) &frasl. n для 22 товаров. с 1920 — уже для 44 товаров. это старейший из существующих ныне И.) и И. Зауэрбека (с 1886), а затем, как его продолжение, И. журнала «Statist» (для 36 товаров, по той же формуле). В США И. цен был впервые исчислен Н. Бурхардтом в 1881 (за 1824-80). Основы современной теории И. цен были заложены трудами У. Джевонса (Великобритания, 1863 и 1865), Э. Ласпейреса (1871) и Г. Пааше (Германия, 1874). В России первые И. оптовых цен публиковались в серии ежегодников
«Свод товарных цен» (за 1890-1915, для 45 товаров, по формуле невзвешенной арифметической средней). Первая мировая война 1914-18 повлекла за собой огромные сдвиги цен на мировом рынке и в народном хозяйстве отдельных государств. для их изучения и измерения потребовались многие новые, до того неизвестные, И. розничных цен, И.
«стоимости жизни» впервые в Великобритании, 1918, и в США, 1919) И. физического объёма экономических явлений (элиминировавшие фактор непрерывно меняющихся цен), И. покупательной силы валютных единиц (в связи с крушением мировой системы золотого монометаллизма и попытками заменить валютные курсы «паритетами покупательной силы» валют),
различные И. для изучения конъюнктуры и др. Поэтому последнее полустолетие (с 1918) стало новым этапом истории И., отмеченным небывалым развитием индексного метода статистической науки и расширением практики И. В СССР уже с 1918 началось исчисление прожиточного минимума рабочих, перешедшее в 1922 в исчисление бюджетного индекса. в 1919-21 — исчисление и публикация индексов Конъюнктурного института. с августа 1922 — публикация И оптовых цен Госплана. В планово развивающемся народном хозяйстве СССР (а после второй мировой войны 1939-45 и других социалистических государств) потребовалось построение и регулярное исчисление множества новых И., особенно И. плановых заданий и И. степени выполнения плана. 20-е гг., а затем десятилетие 1956-65 были годами, особенно интенсивного развития теории советского индексного метода как одного из мощных познавательных средств современной советской статистики.
Лит.: Немчинов В. С., Сельскохозяйственная статистика с основами общей теории, Избр. произв., т. 2, М., 1967, гл. 19. Суслов И. П., Общая теория статистики, М., 1970. Статистический словарь, М., 1965 [статьи об индексах]. «Уч. зап. по статистике АН СССР»,
1955, т. 1. 1959, т. 5. 1963, т. 7. Югенбург С. М., Индексный метод в советской статистике, М., 1958. Перегудов В. Н., Теоретические вопросы индексного анализа, М., 1960. Казинец Л. С., Теория индексов (Основные вопросы), М., 1963. Яновский А. С., Русские индексы, в кн.: Фишер И., Построение индексов, [пер. с англ.], М., 1928 (приложение 6, с. 391-438). Фишер И., Этапы истории индексов, там же (приложение 4, с. 378-81). Четвериков Н. С., Статистические и стохастические исследования, М., 1963, с. 13-56.
Ф. Д. Лившиц.

РубрикиИ